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A new theoretical model is developed for the growth of a convecting fluid layer at the 
base of a stable, thermally stratified layer when heated from below. The imposed 
convective heat flux is taken to be comparable to the heat flux conducted down the 
background gradient so that diffusion ahead of the interface between the convecting 
and stable layers makes a significant contribution to the interfacial heat flux and to the 
rate of rise of the interface. Closure of the diffusion problem in the stable region 
requires the interfacial heat flux to be specified, and it is argued that this is determined 
by the ability of convective eddies to mix warmed fluid below the interface downwards. 
The interfacial velocity, which may be positive or negative, is then determined by the 
joint requirements of continuity of heat flux and temperature. A similarity solution is 
derived for the case of an initially linear temperature gradient and uniform heating. 
Solutions are also given for a heat flux that undergoes a step change and for a heat flux 
determined from a four-thirds power law with a fixed base temperature. Numerical 
calculations show that the predictions of the model are in good agreement with 
previously reported experimental measurements. Similar calculations are applicable to 
a wide range of geophysical problems in which the tendency for diffusive restratification 
is comparable to that for mixed-layer deepening by entrainment. 

1. Introduction 
There are many geophysical situations in which a turbulent fluid layer is separated 

from a stably stratified layer by a relatively sharp interface. Examples include the 
oceanic upper mixed layer and underlying pycnocline, the atmospheric convective layer 
and overlying stratosphere, the convection and radiation zones in stars (Schwarzschild 
1958), lakes undergoing penetrative convection (Carmack & Farmer 1982), turbidity 
currents in stably stratified environments (Kerr 1991), and convecting and conducting 
zones in magma chambers (Jaupart & Brandeis 1986) and possibly in the Earth’s core 
(Gubbins, Thomson & Whaler 1982). Environmental applications include mixing in 
solar ponds, dispersal of buoyant pollutants and reservoir management. In each case 
the quantities of most interest are the rate of buoyancy transfer across the interface 
between the layers and the rate of migration of the interface. 

Studies of entrainment across interfaces have drawn distinctions between mixing due 
to turbulent flows with zero and with non-zero mean shear, and between flow 
generated by convective motions and by mechanical mixing. References to the 
extensive literature in the field can be found in the monographs by Turner (1973) and 
Zilitinkevich (1991) and in the review by Fernando (1991). Many of the investigations 
of zero-mean-shear mixing have used the mixing-box configuration of Rouse & Dodu 
(1955) in which the turbulence is generated by an oscillating rectangular grid. Debate 
has centred on the energetics of the turbulent flow, on the mechanisms of mixing such 
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as ‘splashing’ by impinging eddies (Linden 1973), interfacial wave breaking (Fernando 
& Long 1985; Hannoun & List 1988) and Kelvin-Helmholtz instabilities (Hannoun & 
List 1988; Mory 1991), on whether the asymptotic dependence of the entrainment rate 
at large Richardson number Ri is proportional to Rip’, Rip3I2 or RiF7I4 and on the 
thickness of the interfacial layer. 

A significant feature of all this work is that the PCclet number is assumed to be 
sufficiently large that molecular diffusion of the stratifying component (heat, salt, etc.) 
can be neglected in the bulk of the stratified region. As a result, the buoyancy flux 
across the interface is primarily advective, rather than diffusive, and caused by 
turbulent erosion of the stratified region. In this paper we consider the opposite limit 
of low PCclet number in which the diffusive flux from a strongly stratified region is the 
dominant contribution to the buoyancy flux across the interface. It may be noted that 
there is in general a competition between the tendency of diffusion to stabilize the 
turbulent region and the tendency of the turbulence to erode the stratified region. At 
high PCclet number the turbulent region inevitably grows at the expense of the stratified 
region. At low PCclet number the competition is more evenly matched and the interface 
between the stratified and turbulent regions may be held stationary or even advance at 
the expense of the turbulent region. It is this situation we propose to model. 

Comparatively little is known about low-PCclet-number entrainment despite its 
relevance to diffusive restratification. An indication of the significance of the PCclet 
number Pe is given by a comparison of the experimental results of Fernando & Little 
(1990), which show that there is little or no effect of diffusion on the entrainment rate 
when Pe > lo3, and those of Crapper & Linden (1974), which show that the interfacial 
thickness between two grid-stirred turbulent layers is diffusively controlled when 
Pe < 200. Various authors (e.g. Phillips 1977; Hannoun & List 1988; Noh & Fernando 
1993) have suggested that entrainment is diffusively controlled, and therefore 
dependent on the PCclet number, when the Richardson number is sufficiently large that 
wave breaking is suppressed in the interfacial zone between grid-stirred and stratified 
regions. These studies are at sufficiently large PCclet number that diffusion influences 
only the interfacial zone and do not address the case considered here in which diffusion 
influences the bulk of the stratified layer. Hopfinger & Linden (1982) experimentally 
investigated the competition between stratification and turbulent entrainment in a fluid 
heated from above and stirred by a grid from below. At low rates of surface heating 
the turbulence kept the fluid column well-mixed; at larger rates of heating a steady 
stable surface layer was formed through which the conductive heat flux balanced the 
underlying turbulent flux; and at still larger rates of heating the surface stratification 
increased continually. An important feature of their explanation of the results is the 
decay of the turbulence with vertical distance above the grid. This spatial decay is a 
significant difference between the structure of grid-stirred turbulence and that driven 
by convection. 

The study most closely related to the present paper is that of Denton & Wood (198 1, 
referred to hereafter as DW), who presented experimental results and a model for the 
erosion of a stable temperature gradient by heating from below at low Peclet number. 
Following a discussion in $2 of the mechanism of inteFfacial motion when diffusion is 
dominant, we propose a new, physically motivated boundary condition that closes the 
diffusion problem in the stable region and determines the interfacial motion. This 
boundary condition was not present in the model of DW, who closed the problem, 
possibly unconsciously, by the way they solved their equations numerically. In $3 we 
derive a similarity solution to the governing equations with the new boundary condition 
for the case of an initially linear temperature profile heated steadily from below. 
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Solutions for a heat flux that undergoes a step decrease and for a heat flux determined 
from a four-thirds power law with a fixed base temperature show how the convecting 
region can be restratified if the heat is not maintained. The experimental data of DW 
are reanalysed in $4 using the new boundary condition and very good agreement is 
obtained. Further discussion is given in $5 .  

It should be noted that, in the present problem, the Peclet number may be defined 
as the ratio of the advective heat flux in the convecting region either to the small 
conductive flux in the convecting region or to the much larger background conductive 
flux in the stably stratified region. This distinction has not been clearly drawn in the 
preceding literature. In order to reduce possible ambiguity but still retain links with 
existing terminology, we use the terms convective Piclet number or Pe to refer to the 
former definition, but the terms high and low PCclet number or global PCclet number 
to refer to the latter definition. Formulae are given in Appendix A. 

2. The model and equations 
We consider a thermally stratified fluid being heated uniformly from its lower 

boundary. Based on experimental observations (e.g. Deardorff, Willis & Lilly 1969; 
Deardorff, Willis & Stockton 1980; DW), we divide the fluid conceptually into four 
regions (figure la).  At large distances above the heated lower boundary the fluid is 
essentially stagnant and heat transfer is by diffusion alone. Between the diffusive region 
and the boundary lies a (growing) thermally convecting region in which the fluid is 
well-mixed and the heat transfer is predominantly by turbulent advection. (Viscously 
dominated convection in a high-Prandtl-number fluid is considered briefly in Appendix 
B.) The third region is the thermal boundary layer between the well-mixed convecting 
region and the heated boundary. This layer is heated diffusively by the adjacent 
boundary, becomes buoyant and unstable, and intermittently detaches from the 
boundary to rise as a thermal into the overlying mixed layer (Lick 1965; Howard 1966). 
Provided the Rayleigh number based on the heat flux and the height of the convecting 
region is sufficiently large, the thickness of the basal boundary layer and the 
temperature anomalies within it can be neglected. Finally, there is an interfacial zone 
between the well-mixed region and the diffusive region in which rising thermals 
penetrate a short distance into the overlying stable stratification and are then returned 
to their level of neutral buoyancy. At low Ptclet number this zone is much thinner than 
the vertical scale of the temperature variations in the overlying diffusive region and 
may also be neglected (see Appendix A; cf. also the small penetration distance into the 
diffusive core in the experiments at low Peclet number of Crapper & Linden 1974). 

We are thus led to a simple two-layer model (figure 1 b) in which the internal details 
of the basal thermal boundary layer and of the interfacial zone are represented only by 
their ability to transmit a heat flux between the boundary and the well-mixed region 
and between the well-mixed region and the diffusive region. Since the thickness of the 
interfacial zone is negligible, both the temperature and the heat flux are continuous 
across it. This model is similar to that used in previous analyses of low-PCclet-number 
penetrative convection (DW; Gubbins et al. 1982; Jaupart & Brandeis 1986), but our 
analysis differs in the equations and boundary conditions used to describe the layers. 
It should also be noted that the continuity conditions used at the interface differ from 
previous models of high-PCclet-number entrainment that include a temperature step at 
the interface between the well-mixed region and the stably stratified region. This is a 
reflection of the fact that a temperature discontinuity cannot be maintained when the 
diffusive heat flux above the interface plays a significant role, as considered here. 
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FIGURE 1. (a) Schematic representation of a stratified fluid being heated at its lower boundary. I, 
Stably stratified region in which heat transfer is by diffusion; 11, well-mixed convecting region; 111, 
basal thermal boundary layer, which intermittently ejects buoyant thermals ; IV, interfacial zone 
given by the penetration distance of rising thermals. (b)  The simplified two-layer model, which i s  the 
subject of the present analysis. A stable diffusive region I is separated from a well-mixed region I1 by 
an interface at height z = h(t). The basal heat flux is Q and the interfacial heat flux Q,. 

Let the well-mixed region occupy 0 < z < h(t) and the stably stratified region 
h(t) < z < a. The temperature in the stably stratified region obeys the diffusion 
equation 

An ad hoc representation of enhanced diffusion due to internal wave motion might be 
obtained by increasing the thermal diffusivity K near the interface. In the following, 
however, we shall take K to be the constant molecular value of diffusivity, both for 
simplicity to avoid using an empirical parameterization of wave-induced diffusion and 
because the experiments of DW showed that the interfacial heat flux was predominantly 
due to molecular diffusion (see 94). Equation (1) must be solved subject to the 
boundary conditions 

T-tT,  as z + a ,  (2 a) 
T+T, as t+0, (2 6) 

where T,(z) is the stable temperature profile at time t = 0 when the heating commences. 
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Let the imposed heat flux at the lower boundary be Q(t) and let the interfacial heat 
flux from the well-mixed region to the diffusive region be Qi(t). Conservation of 
thermal energy shows that the uniform temperature of the well-mixed layer obeys 

where pCp is the heat capacity of the fluid per unit volume and the dot denotes a 
derivative with respect to time. As a result of the continuity conditions at the interface, 

where the subscript + denotes a value just above the interface. 
Equations (lF(5) are straightforward, and equivalent equations are likely to feature 

in any simple model of penetrative convection at low Ptclet number. However, the 
system is not as yet complete and can be regarded as missing either a boundary 
condition for the diffusion equation (1) or an equation for the interfacial velocity; 
equation (5) cannot serve both purposes. To see this more clearly, we combine (3)-(5) 
to obtain 

Equation (6) is a mixed boundary condition for (1) if h is known, or an equation for 
h if the value of aT+/az is known so that r, can be calculated from (1) and (2). 

The physical idea that is required to close the problem is that of competition between 
the tendency of the interfacial heat flux to stratify the underlying fluid and the tendency 
of the convective eddies to erode the overlying stratification. For example, if the basal 
heat flux Q were suddenly set to zero then the convecting layer would restratify (albeit 
initially very weakly) in the short time taken for the convective eddies to come to rest, 
and h would become zero. Conversely, if Q were suddenly increased then we would 
expect to see a corresponding increase in h. Considerations such as these suggest that 
the motion of the interface is related to the current value of Q and determined by the 
ability of convective eddies driven by the positive buoyancy flux at the base to mix the 
negative buoyancy flux across the interface through the depth of the well-mixed layer. 
Thus we write the remaining boundary condition as 

Qi = -kQ, (7) 
where k is a dimensionless entrainment coefficient. 

A closure of similar form to (7) has been used in previous models of high-PCclet- 
number penetrative convection (e.g. Betts 1973 ; Carson 1973; Tennekes 1973), though 
in that context Qi is given by hAT rather than by (4), where AT is the interfacial 
discontinuity in temperature obtained by neglecting diffusion. (Extensions of (7) to 
grid-stirred mixing also replace Q by the turbulent kinetic energy flux near the 
interface.) Other models of entrainment at high Ptclet number have been closed by 
expressing the dimensionless entrainment velocity h/u* as a function of the interfacial 
Richardson number Ri, = agl* A T / u * ~ ,  where u* and I* are turbulent velocity and 
length scales. Many authors have observed that the two forms of closure are related 
and that an assumption that k is constant is equivalent to h/u* N Ri;'. This 
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entrainment law has been supported by various theoretical and experimental studies of 
thermally stratified fluids but is known not to apply in all parameter regimes (see 
Turner 1973; Fernando 1991). 

The value of k in the low-PCclet-number penetrative convection considered here may 
be expected to be determined by the vigour of the convection in the well-mixed layer. 
A convective velocity scale is given by u* = (~xgQh/pC,)’/~, where g is the gravitational 
acceleration and CL is the coefficient of thermal expansion. The vigour of convection can 
thus be expressed by one of the following parameters: the convective PCclet number 
Pe = u * ~ / K ;  the flux Rayleigh number Ra = Pe3/Pr;  and the Reynolds number 
Re = Pe/Pr;  where the Prandtl number is given by Pr = V / K  and v is the coefficient of 
kinematic viscosity. It follows that k can be expressed as a function of, say, Pe and Pr. 
However, the functional form of k(Pe, Pr) is not yet known and in what follows we shall 
derive illustrative solutions under the simplest assumption that k is approximately 
constant. The good agreement with experimental results in 94 where the value of k was 
fixed by a one-point experimental measurement suggests that this approach is 
reasonable. If future experiments reveal the dependence of k on Pe and Pr then this 
could readily be incorporated into (7). 

A little manipulation of (4) and (7) shows that the gradient Richardson number 
Ri = agh2(aT,/az)/u*2 is directly related to k by Ri = kPe and hence we have not 
shown any dependence of k on Ri as would be customary in models of large-PCclet- 
number entrainment. This expresses the fact that the temperature gradient immediately 
above the interface, and hence the local Richardson number, are themselves determined 
by the competition between diffusive stratification and convective erosion. Thus the 
local Richardson number is a dependent rather than an independent parameter. The 
gradient Richardson number based on the original profile r, is not relevant since this 
only describes the temperature gradient a long way from the entrainment processes at 
the interface. 

To show that (7) does indeed close the problem, we consider the equations in a frame 
translating at the speed of the interface. Equation (1) is written for T(Z,  t), where 
Z = z-h(t). as 

at Z = O  
aT - Q(1 + k )  
at pC,h 
-- From (3), (5) and (7) (9) 

(10) - and from (4) and (6) T -- kQ at Z = O .  az pc,K 

We determine h by requiring that the solution of (8) subject to the boundary conditions 
(2) and (9) is compatible with the condition (10). For a given evolution of the interfacial 
temperature T(Z = 0, t )  and monotonically increasing far-field temperature &(z), the 
solutions of (8) have the property that aT(0, t ) / aZ+  0 as h + - 00 and aT(0, t ) /dZ+ co 
as h+ 00 (figure 2), thus enabling (10) to be satisfied by a suitable value of 6. Further 
consideration based on the solutions given in $3.1 shows that h is an increasing 
function of Q, that h cc ( t  - to)-’’’ if Q undergoes a step change at t = to,  and that h 
decreases suddenly to zero if Q is suddenly reduced to zero. Hence the boundary 
condition (7) makes both physical and mathematical sense. 

It remains to comment on the solutions to equations equivalent to (1)-(5) presented 
by DW and Gubbins et al. (1982), which were derived without appeal to a boundary 
condition equivalent to (7). We have already noted that (1)-(5) are incomplete and 
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I 

FIGURE 2. Suppose the temperature of the well-mixed layer increases by ATin time At. If the interface 
rises rapidly (A) then the temperature gradient above the interface is increased; if it descends rapidly 
(B) then the temperature gradient is decreased. There is a unique value of h which enables the flux 
boundary condition (7) to be satisfied. 

cannot be solved without some form of closure. In the case of the solutions described 
above, this closure was provided implicitly, and perhaps unconsciously since no 
explanation was given, by the numerical algorithms used to solve the equations. For 
example, at each time-step DW fitted a simplified cubic equation to the temperatures 
at the last five grid points in the diffusion region, extrapolated the profile to obtain one 
‘ghost’ point in the well-mixed region and then used this point to obtain a new 
interfacial temperature by explicit forward differencing. Thus the new interfacial 
temperature is specified as a function of the five old temperatures adjacent to the 
interface. This does give a boundary condition and a closed problem, but the physical 
meaning of this boundary condition is not clear. 

3. Some simple solutions 
Before comparing the theoretical model with experimental observations, we present 

solutions to two simple problems in order to illustrate some qualitative features of the 
model. 

3.1. Initially linear gradient with constant heat flux 
Consider an initially linear temperature gradient T, = & + T z  which is heated from 
below with a constant heat flux Q = Q, for t > 0. We choose an arbitrary vertical 
lengthscale L and define dimensionless variables by 

Equations (1)-(5) and (7) can then be rewritten as 

ae/aT = a 2 o / a p ,  

O + c  as or T + O ,  
Hd0,ld.r = (1 + k ) 2 ,  

ao+/ag = k 2 ,  
where, as before, the subscript + denotes the value immediately above the interface. 
The parameter 2 is readily interpreted as the ratio of the applied heat flux to that 
conducted down the initial temperature gradient or, equivalently, as the global Ptclet 
number. 
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FIGURE 3. The solution h(9,k)  of (21) for k = 0, 0.1, 0.2 and 0.3 (solid lines). The asymptotic 
approximation (22) for 9 $ 1 is shown dashed. The dimensionless depth of the well-mixed region at 
the base of an initially linear temperature gradient heated uniformly from below increases according 
to H = 2hr1". 

The independence of the scaled equations of the lengthscale L suggests that the 
solution of (12t(  15) is self-similar. We define a similarity variable 

q = C/(2+2) 
and seek a solution of the form 

H = 2hr1/', 0 = 2~"'flq). (17) 

(18) 

Substitution into (12) and (13) shows that 

f ( q )  = q + A  ierfc q, 
where A is a constant and ierfc q is the first integral of the complementary error function 
erfcq (Abramowitz & Stegun 1965). The boundary conditions (14) and (15) imply 

2hf(h) = (1 + k)  2, 
f'(h) = k2,  

from which we obtain h as the root of 

(1 - k 2 )  ierfc A)  
= (1 + k ) 2  

,A(,, erfch 

Solutions for h(2, k)  are shown in figure 3 and some similarity temperature profiles 
fly) in figure 4. As would be expected, the rate of ascent of the interface increases with 
the heat flux 9 and with the entrainment coefficient k.  The temperature gradient above 
the interface is greater than the initial gradient if k 2  > 1. 

2h2 - 2(1+ 2k) - 1 and A - k2/(2h), 

from which we can show that the perturbation temperature profile tends to a step of 
magnitude A0 = k 2 ! / f i  in this limit. This establishes a formal link with models of high- 
PCclet-number penetrative convection though it should be emphasized that different 
mechanisms of entrainment are operative at high Piclet number and the present 
theoretical framework may not be appropriate. 
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FIGURE 4. Self-similar temperature profiles f i r )  for an initially linear temperature gradient heated 
uniformly from below. The temperature below r = h (the end of the curves) is uniform. (a) 9 = 6 and 
k = 0, 0.1, 0.2 and 0.3; (b) k = 0.2 and 9 = 0.25, 1, 3, 6, 10 and 20. 

The analysis may be taken a little further by considering the case in which the 
dimensionless heat flux is increased from 2 to 2 + A 2  at time 70 with the interfacial 
height Ho and temperature profile Bo given by (17). As a result of the increase in heat 
flux, the interfacial temperature gradient is increased by k A 2  and the rate of change 
of the interfacial temperature by the finite amount (1 + k ) A 2 / H o .  We expect a 
temperature perturbation to diffuse away from the interface as the profile adjusts to the 
new heat flux and so we look for a local short-time solution of the form 

(23 a> 

(23 b) 

where 6 = # -  H0)/(7--  7,)l iZ. From the new interfacial boundary conditions we find 
that 

H - Ho + 2A(7 - T ~ ) ~ " ,  

0 - do(<) + 2(7 - 7011%(6) - 2(7 - 70)112{k26+g(6)), 

g(A)  + k 2 A  = 0 and g'(A) = k A 2 ,  (24) 

from which A is given by 
AerfcA A 2  
ierfc A 2 

- 

(figure 5a). It will be noted that if the heat flux is reduced ( A 2  < 0) then A < 0 and the 
interface starts to descend as part of the convecting zone restratifies - the reduced heat 
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FIGURE 5. (a) The solution A(A2l2)  of (25) for the initial rate of interfacial rise after a step increase 
in the rate of basal heating from 2 to 2 + A9. If A9 < 0 then the interface starts to descend; if 
A 2 1 2  + - 1 then A + - 00, corresponding to instantaneous restratification when the basal heat flux 
is removed. (b)  The evolution of the interfacial height and mixed-layer temperature for k = 0.2 when 
the rate of heating is increased from 2 = 2 to 2 = 10 at T = 1. The numerical solution for H (solid 
curve) confirms the asymptotic solutions (17) (dashed curves) and (23) (dotted curve). The similarity 
solution at the new heating rate is evaluated at 7-0.8 in order to account for the period at the lower 
heat flux. 

flux drives a weaker convective flow which is unable to carry the previous levels of 
negative buoyancy flux down from the interface. In the limit that the new heat flux 
2 + A 2  + 0, the coefficient A + - 00, which suggests that the only solution in this case 
is instantaneous restratification of the entire convecting layer. While (23) describes the 
short-time behaviour after the change in heat flux, at large times the solution adjusts 
to the similarity form (17) for the new heat flux (figure 5b). 

3.2. Initially linear temperature with constant base temperature 
Consider now an initially linear temperature profile T, = & + T z  and suppose that the 
temperature at the base is suddenly changed at t = 0 to a fixed value T, greater than 
G. After a very short transient the unstable boundary layer at the base will start to 
convect and a well-mixed convecting region will start to grow into the overlying 
gradient. The convection is driven by the heat flux due to the temperature difference 
between the interior of the well-mixed region and TB. This temperature difference 
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FIGURE 6. The evolution of an initially uniform temperature gradient heated from below at a rate 
9(1 where 9 = 2. (a) Below the interface (dashed curve) the temperature is uniform and just 
above the interface the gradient is related to the current heat flux. As the mixed-layer temperature 
approaches unity, the heat flux decreases and the convecting zone restratifies. The temperature 
profiles O(5) correspond to times 7 = 0.0018, 0.0081, 0.020, 0.038, 0.066, 0.11, 0.16, 0.25, 0.37, 0.55, 
0.75 and 1.50 (from left to right). (b) The variation of the mixed-layer temperature 0, and interfacial 
height H with time 7. After 7 FZ 0.551 the convective zone vanishes and the subsequent evolution is 
by diffusion alone. 

decreases as the mixed layer heats up and, as the convection weakens, the diffusive flux 
from above steadily restratifies the convecting layer until the thermal transport is once 
again by diffusion alone. We model this evolution by assuming that the heat flux 
driving convection depends on the temperature difference across the basal boundary 
layer by the usual four-thirds power law, 

where Cis a constant and T, is the interior temperature of the well-mixed layer (Turner 
1973). 

We follow the same non-dimensionalization as in ( 1  1) but with L chosen to be 
( TB - T,)/T. The resultant system of equations is again given by ( 1 2 t (  15), but in which 
2 is no longer a constant. From (26) we find instead that 

(27) 2 = &( 1 - Bm)4’3, 
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where 

The equations were solved numerically by mapping the diffusive region onto a fixed 
domain. At each time-step (12)-(14) were solved using a modified Crank-Nicholson 
method that was second-order in both space and time. The value of fi was found 
iteratively using a root-finding algorithm so that (15) was satisfied at the conclusion of 
each time-step. 

The solution of (12b(15) and (27) is shown in figure 6 for the case 4 = 2 and 
k = 0.2. At short times the solution is given by (17) and both Hand 8, increase rapidly. 
As the driving temperature difference 1 - Om decreases, the rate of interfacial rise also 
decreases (more rapidly than t-l/'),  and at T = 0.12, when 6,  = 0.63 and H reaches a 
maximum value of 0.34, the convecting region starts to restratify. As 8, + 1,  the basal 
heat flux (27) and the depth of the convecting layer both decrease to zero, and at 
T = 0.55 convection ceases. The subsequent evolution is entirely diffusive and it is 
straightforward to show that the long-time behaviour is 8 - c+erfc 7. 

4. Comparison with experimental measurements 
Having demonstrated that the theoretical model makes both mathematical and 

physical sense, it is clearly desirable to test the predictions of the model against 
experimental observations. An opportunity to do so is provided by the experiments 
described in DW on heating a stable temperature gradient from below. Three 
experiments were performed in a well-insulated Perspex tank, 30 cm by 30 cm in area 
and 60 cm in height. In each experiment the tank was filled to a total depth of 55 cm 
with a layer of hot water overlying a shallower layer of cold water. The experiments 
differ chiefly in the proportions of hot and cold water used to fill the tank (table 1). 
Though the filling process itself introduced some mixing and a broad gradient between 
the hot and cold layers, the experiments were left undisturbed for up to about an hour 
in order to allow the temperature gradient to develop throughout the lower part of the 
tank. At the end of this time a steady uniform heat flux Q/pC, = 0.023 cm "C s-l was 
then supplied electrically through the base of the tank. Further details can be found in 
DW. Thermocouples were used to determine both vertical temperature profiles at a 
given time and temporal temperature variations at a given height; the rise of the 
interface between the well-mixed and stratified regions was monitored visually. 

In the calculations reported in DW, a small correction was made to account for the 
heat losses from the apparatus. In our calculations we model the heat losses very simply 
by using a Newtonian law of cooling at each height in the fluid column based on a 
surrounding temperature of 20 "C. Thus we add a small term of the form - a( T -  20) 
to the right-hand sides of (1) and (3), where the decay constant a is estimated to be 
about 3 x lop6 s-l from the reported experimental rate of decrease in the temperature 
T, at the top of the tank (figures 7, 10 and 1 1  of DW) distant from the interfacial 
processes. Though Newtonian cooling is an approximation of the true heat losses, the 
term is small and of the right magnitude, and we do not expect the results to be 
significantly influenced by the details of the approximation. 

From measurements of the vertical temperature profile DW estimated that at 
170 min into experiment ES2 the ratio of the interfacial heat flux due to molecular 
diffusion to the basal heat flux was 0.13 (calculated as 77 YO of 0.17 from p. 15 of DWt). 

t From measurements of the rate of change of the temperature profile DW suggested that the total 
interfacial heat flux may have been about 30 % greater than the molecular value due to the effects of 
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FIGURE 7. Calculated values (solid curves) of the temperature at various heights (labelled in cm), the 
interfacial and upper surface temperatures and the interfacial height for experiment ESl. The 
experimental measurements marked + , x and 0 and the fitted dashed curves are reproduced from 
figure 11 of DW. The dotted curve represents the numerical calculation of the interfacial height by 
DW. 

ES 1 10.0 17.7 40.1 41 
ES2 13.9 20.5 39.2 73 
ES3 23.6 10.0 38.4 32.5 

TABLE 1. Parameters for the experiments of DW. A depth d, of fluid of temperature T,, is initially 
overlain by fluid of temperature to a total depth of 55 cm. At time t ,  heating of the lower boundary 
commences 

Accordingly, in our calculations we use a constant value k = 0.13 for all three 
experiments and, as stated earlier, we also take the diffusivity K to be constant and 
equal to the molecular value. We note that we had no reason apriori to expect k to be 
constant during and between experiments and the justification for our choice of a 
constant value lies in simplicity and in the good agreement obtained with the 
experimental observations. Noticeably worse agreement is obtained by use of the 
values k = 0.12 or k = 0.14. 

Thus the calculations to be presented are based on the modified forms of equations 
(1) and (3), and (4), (5 )  and (7). The initial conditions are given by the reported 
turbulent diffusion. However, given the experimental uncertainties in obtaining rates of change near 
an oscillating interface, it is not clear that this difference is significant and we choose to use the more 
directly calculated molecular value. 
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FIGURE 8. As figure 7 but for experiment ES2, with data from figure 7 of DW. 

temperature profiles (figures 7, 10 and 11 of DW) at 20 min (ESl), 60 min (ES2) and 
0 min (ES3), which are prior to the commencement of heating. A no-flux boundary 
condition is applied at the top of the fluid, z = 55 cm, since any experimental heat 
losses from the top have been included in the Newtonian cooling term. The equations 
are solved using a numerical scheme similar to that outlined in $3.2. It will be noted 
that the model as described, with Newtonian heat losses, constant coefficients and no 
wave-enhanced diffusion, is almost the simplest possible. Nevertheless, the calculations 
give excellent agreement with the experimental observations, which suggests that the 
model does encapsulate the dominant physical processes. Refinements of the model are 
possible but are not justified either by the quality of the data or by our present level 
of knowledge about the detailed mechanisms of turbulent entrainment. 

In figures 7-9 we present the experimental observations of DW and our numerical 
predictions for the evolution of the interfacial height, the mixed-layer temperature and 
the temperatures at a number of fixed depths in the same style as figures 7, 9 and 11 
of DW. The agreement between observation and prediction is, in general, at least 
comparable to that obtained by DW (using their unusual numerical boundary 
condition) and in some cases, notably experiment ES1, is significantly better. In all 
cases, the agreement with the measurements of the interfacial height is better. 

The importance of diffusive heat transfer across the interface is shown by several 
qualitative features present in both the predictions and the observations. Firstly, fluid 
above the interface is cooled by heat transfer to the underlying well-mixed layer, 
causing the temperature at a given height to dip downward as the interface approaches. 
Secondly, the pre-cooling of fluid above the interface allows the interface to rise 
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FIGURE 9. As figure 7 but for experiment ES3, with data from figure 10 of DW. 

30 

25 
h 

W 

8 2o 

$ 
.- 

15 

10 

20 22 24 26 28 30 32 34 36 38 40 
Temperature (“C) 

FIGURE 10. Calculated temperature profiles at various times and the interfacial temperature as a 
function of interfacial height for experiment ES2. Points marked + or 0 are experimental 
measurements reproduced from figure 8 of DW. 

significantly faster than if the interfacial heat flux were ignored (see figure 6 of DW). 
Thirdly, a plot of the vertical temperature profiles at  a succession of times (figure 10) 
clearly shows the diffusive evolution of the stably stratified region on the timescale of 
the interfacial motion. 
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Towards the end of the experiments there is a tendency for the experimental 
observations to show a greater depth of cooled fluid above the interface than in the 
numerical predictions. By this stage the interface has risen through the region of 
strongest temperature gradient and is starting to advance rapidly into the relatively 
unstratified fluid at the top of the tank. We suggest that the greater cooling above the 
interface may be caused by large-amplitude wave motions at late times which enhance 
the effects of molecular diffusion in the weakly stratified region. At earlier times the 
good agreement with the model predictions suggests that the effects of wave motion are 
negligible unless the stratification is very weak. 

5. Discussion 
We have presented a simple two-layer model of penetrative convection at low Peclet 

number. A well-mixed layer is separated from a stably stratified layer by an interface 
across which both the temperature and the heat flux are continuous. The temperature 
of the well-mixed layer is calculated from a global heat budget based on the fluxes 
across its boundaries ; the temperature of the stably stratified layer evolves according 
to the diffusion equation. The interfacial motion is determined by an entrainment 
assumption which expresses the heat flux across the interface as a fraction k(Pe, Pr )  of 
the heat flux driving convection. 

This model may usefully be contrasted in a number of aspects with the sort of model 
usually employed to describe high-Peclet-number penetrative convection. In a high- 
PCclet-number model, the initial temperature profile is ‘frozen’ and does not diffuse on 
the timescale of the evolution of the well-mixed layer. As a result of the neglect of 
diffusive fluxes, the interface is capable of supporting a discontinuity in the temperature, 
which is generated by mechanical erosion of the initial profile by eddies impinging from 
below. The interfacial heat flux at  high Piclet number is thus given by the erosion of 
the temperature discontinuity rather than by diffusion down the temperature gradient 
above the interface and the Richardson number is an independent rather than a 
dependent variable. The heat budget for the well-mixed layer and the closure on the 
interfacial motion by an entrainment assumption on the interfacial heat flux are, 
however, similar in the two cases. The chief difference between the present model and 
previous models of penetrative convection at low Peclet number is that the previous 
models were not closed by an entrainment equation. 

The entrainment equation embodies the key physical concept that there is a 
competition between the tendency of the interfacial heat flux to restratify the 
underlying fluid and the tendency of the convective eddies to erode the overlying 
stratification. By consideration of what happens if the heat flux driving convection is 
greatly increased or reduced to zero, it is clear that it is this competition that determines 
the rate of interfacial motion. Whereas erosive deepening of the mixed layer is always 
dominant at high Peclet number, both growth of the mixed layer by erosive deepening 
and decay by restratification can occur at  low Piclet number. Particular solutions to 
the model in which the depth of the well-mixed layer decreases by restratification have 
been demonstrated in two cases where the driving heat flux is decreasing. 

Similarity solutions have been found for the cases of an initially uniform gradient 
heated at a constant rate and of the transient response to a sudden change in the rate 
of heating. A numerical scheme based on a shooting method for the interfacial flux 
condition has been described for more general problems. This scheme was used to 
reanalyse the experimental data of DW, showing it to be in very good agreement with 
the present model. This agreement is remarkable since the calculations were based on 
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a single fixed value of the entrainment parameter k, which might in principle depend 
on the convective Peclet number (or Rayleigh or Reynolds numbers) of the flow and 
hence vary between and during experiments. Though a fixed value of k corresponds to 
the well-known Ri-' entrainment law in a high-Peclet-number context, that does not 
explain its occurrence in the present parameter regime. The value of k chosen, 0.13, was 
fixed by one experimental measurement and further experiments are clearly desirable 
to determine the (possibly weak) dependence of k on Pe and Pr. Such experiments need 
to be in the regime (see Appendices) in which convection is sufficiently vigorous to keep 
the convective layer well-mixed but not so vigorous that rising thermals penetrate a 
greater distance than the diffusion distance in the stable region. These conditions are 
favoured by large layer depths, relatively inviscid fluids and strong initial temperature 
gradients. 

It would also be of interest to extend our investigations to low-Peclet- 
number situations in which the turbulence in the well-mixed layer is generated by grid- 
stirring or a mean shear flow rather than convection. In these cases, the spatial 
variation of the turbulent intensity must be taken into account, as in Hopfinger & 
Linden (1982), and the entrainment condition (7) would need to be modified 
accordingly. Comparison could then be made with the grid-stirred experiments of Noh 
& Fernando (1993) in which entrainment was diffusion dominated but the effects of 
diffusion were confined to the interfacial zone and did not affect the bulk of the 
unmixed region. From such extensions, it is to be expected that a further range of 
solutions that show an intriguing competition between erosion and restratification will 
result. 

I am grateful to S. S. S. Cardoso, H. E. Huppert, R. C. Kerr, P. C. Matthews, J. S. 
Turner and M. G. Worster for thoughtful and constructive comments on an earlier 
version of this manuscript and to 1. R. Wood for providing further information about 
the experiments described in DW. 

Appendix A. The penetration distance of rising thermals 
We present a simple scaling argument to determine the conditions under which the 

penetration distance of rising thermals into the stable region is less than the diffusive 
lengthscale, thus allowing us to neglect region IV of figure 1 (a) in comparison with 
region I. 

Let f' denote the typical magnitude of the temperature gradient in the stratified 
region. Hence the ratio of the advective flux in the convecting region to the typical 
conductive flux in the stable region (a global Piclet number) is given by 

(A 1) Pe, - Q/(pC,  K?). 

The convective Peclet number (the ratio of convection to conduction in the convecting 
region) is given by 

Pe, - Ch/K, 

where zi is the typical velocity scale for the rising thermals 

C - [agQh/(~C,)l ' '~.  
A simple estimate of the penetration distance 6, of rising thermals is given by 

balancing the typical kinetic energy of the thermal with the potential energy created by 
penetration into the stable overlying gradient (see e.g. Phillips 1977). Thus 

;pi22 - ;pafrgs; (A 4) 
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from which we obtain 6,/h - (Peg/PeC)'l2. (A 5 )  

The rate of rise of the interface h may be estimated from 

T, - hF' - Q/(pC,h) 

and the diffusion distance 6, ahead of the interface from 

8, - (Kh/h)"2. 

Thus 6,/h - 1/Peii2. (A 8) 

Hence the condition 6, < 6, requires Pe, 9 Pei. The condition that the convective layer 
is well-mixed further requires Pe, 9 1. 

Consideration of the dependence of these conditions on Q suggests that the present 
model is appropriate for an intermediate range of basal heat flux. At very low rates of 
heating the convection is insufficiently vigorous to keep the convective layer well- 
mixed. At very high rates of heating the interface advances rapidly so that the 
penetration distance of thermals is greater than the diffusion distance in the stable 
layer. These constraints should be kept in mind for the design of future investigations 
into the functional dependence of the entrainment coefficient k.  It should also be noted 
that the arguments above are based on a high-Reynolds-number inertia-buoyancy 
balance in which viscous forces are neglected. Modifications may thus be necessary for 
high-Prandtl-number fluids, in which convection can occur at high Rayleigh number 
but only moderate to low Reynolds number (Appendix B). 

Appendix B. Convection at high Prandtl number 
In this Appendix we discuss the application of our model to convection at high 

Prandtl number in which the dynamics are governed by a viscous-buoyancy balance 
and there is a significant separation between the scales of the viscous and thermal 
boundary layers. A useful comparison can be made with the results of experiments by 
Jaupart & Brandeis (1986), in which a layer of hot silicone oil was simultaneously 
cooled from top and bottom. A well-mixed convecting zone driven by cooling from 
above occupied most of the layer while a relatively thin stagnant zone formed at the 
base of the layer due to the cooling at the lower boundary. The Prandtl number ranged 
from 175 to 8850, the Rayleigh number from lo6 to lo8 and the typical Reynolds 
number was of order 0.1 (based on v = 1 cm2 s-l, a plume spacing of order 1 cm and 
a plume velocity of order 0.1 cm s-'). 

The experimental observations motivate a two-layer model of the form considered 
in this paper, in which the heat flux at the top is given by (26) and the boundary 
condition (2a) is replaced by a fixed-temperature boundary condition at the lower 
boundary. Jaupart & Brandeis (1986) set Qi = 0 and h = d, the total depth of the layer, 
to obtain an approximate solution for T,, 

T, = (1 + t ) -3 ,  (B 1) 

in suitable dimensionless variables. The diffusive evolution of the temperature in the 
stagnant layer was approximated by making the similarity ansatz that T(z, t )  = 
T,(t)f(z/[d-h(t)]}, where the shape function f satisfies f (0)  = 0 and f'(1) = 0. The 
global heat balance for the stagnant layer then shows that 
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where F = s : f ( x )  dx and Ra is the initial Rayleigh number. Reasonable agreement 
with the experimental data was obtained withf= x(2-x) (figure 11) though, since the 
diffusion equation was not actually solved, this choice is somewhat arbitrary. Other 
choices, such as f = 1 - (1 - x)" with n > 1, agree less well. 

Numerical solution of the full system of equations (i.e. (lF(5), (7) and (26) suitably 
modified), also shows the dependence h K Rap1l6, which is confirmed experimentally. 
The depth of the stagnant layer, however, is underestimated by about 20 % (figure 1 l), 
even for k = 0. This suggests that descending thermals, rather than entraining fluid 
from the top of the stagnant zone and mixing it through the convecting zone, are 
instead detraining, underplating the convecting zone and increasing the depth of the 
stagnant zone. Indeed, this behaviour is to be expected given the large Prandtl number 
and low Reynolds number of the flow. From a theoretical point of view, a boundary 
condition at the interface is still required to solve the diffusion equation (1). These 
considerations suggest that at large Prandtl number and low Reynolds number this 
condition should take the form of a detrainment condition based on a viscous- 
buoyancy balance rather than the entrainment condition (7) which is based on an 
inertia-buoyancy balance. 
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